China Standard High Quality RV50 Series Worm Gear Reducer differential gearbox

Product Description

Product Description

Model No.: NMRV/NRV571, 030, 040, 050, 063, 075, 090, 110, 130
Reduction gear, worm gear, gear reducer
Reduction gear

Features:
1) High quality aluminum alloy die cast gearbox
2) High accuracy worm gear and worm shaft
3) Less noise and lower temperature increase
4) Easy mounting and linking, high efficiency
5) Power: 0.06 – 15kW
6) Output torque: 2.7 – 1, 760Nm
7) Transmission rate: 5 – 100
Inner packing: Carton Outer packing: Wooden case
Reduction gear, worm gear, gear reducer

  model   PAM IEC   N   M P   7.5D   10D   15D   20D   25D   30D   40D   50D 60D    80D
  NMRV030   63B5   95   115   140   11   11   11   11   11   11   11   /   /   /
  NMRV030   63B14   60   75   90   11   11   11   11   11   11   11   /   /   /
  NMRV030   56B5   80   100   120   9   9   9   9   9   9   9   9   9   9
  NMRV030   56B14   50   65   80   9   9   9   9   9   9   9   9   9   9
  NMRV040   71B5   110   130   160   14   14   14   14   14   14   14   /   /   /
  NMRV040 71B14    70   85   105   14   14   14   14   14   14   14   /   /   /
  NMRV040   63B5   95   115   140   11   11   11   11   11   11   11   11 11    11
  NMRV040   63B14   60   75   90   11   11   11   11   11   11   11 11    11   11
  NRMV050   90B5   130   165   200   19   19   19   19   19   /   /   /   /   /
  NRMV050   80B14   80   100   120   19   19   19   19   19   /   /   /   /   /
  NRMV050   71B5   110   130   160   14   14   14   14 14    14     14   14   14   14
  NRMV050   71B14   70   85   105   14   14   14   14   14   14   14   14   14   14
  NMRV063   90B5   130   165   200   24   24   24   24   24   24   /   /   /   /
    NMRV063   90B14   95   115   140   24   24   24   24   24   24   /   /   /   /
    NMRV063   80B5   130   165   200   19   19   19   19   19   19   19   19   /   /
    NMRV063   80B14   80   100   120   19   19   19   19   19   19   19   19   /   /
  NRMV075   100/112B5   180   215   250   28   28   28   /   /   /   /   /   /   /
  NRMV075   100/112B14   110   130   160   28   28   28   /   /   /   /   /   /   /
  NRMV075   90B5   130   165   200   24   24   24   24   24   24   24   /   /   /
  NRMV075   90B14   95   115   140   24   24   24   24   24   24   24   /   /   /
  NMRV090   100/112B5   180   215   250   /   /   /   /   24   24   24   24   24   24
    NMRV090   100/112B14   110   130   160   /   /   /   /   24   24   24   24   24   24
    NMRV090   90B5   130   165   200   /   /   /   /   /   /   /   19   19   19
    NMRV090   90B14   95   115   140   /   /   /   /   /   /   /   19   19   19

Detailed Photos

 

FAQ

   1. How to choose a gearbox which meets our requirement?
You can refer to our catalogue to choose the gearbox or we can help to choose when you provide
the technical information of required output torque, output speed and motor parameter etc.

   2. What information shall we give before placing a purchase order?
a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor informationetc.   
b) Housing color.
c) Purchase quantity.
d) Other special requirements.

   3. What industries are your gearboxes being used?
Our gearboxes are widely used in the areas of textile, food processing, beverage, chemical industry,
escalator,automatic storage equipment, metallurgy, tabacco, environmental protection, logistics and etc.

  4. Do you sell motors?
We produce and sale motor by ourselves with high quality.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Worm Gear
Step: Single-Step
Samples:
US$ 23/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gear gearbox

Are there any disadvantages or limitations to using gear reducer systems?

While gear reducer systems offer numerous advantages, they also come with certain disadvantages and limitations that should be considered during the selection and implementation process:

1. Size and Weight: Gear reducers can be bulky and heavy, especially for applications requiring high gear ratios. This can impact the overall size and weight of the machinery or equipment, which may be a concern in space-constrained environments.

2. Efficiency Loss: Despite their high efficiency, gear reducers can experience energy losses due to friction between gear teeth and other components. This can lead to a reduction in overall system efficiency, particularly in cases where multiple gear stages are used.

3. Cost: The design, manufacturing, and assembly of gear reducers can involve complex processes and precision machining, which can contribute to higher initial costs compared to other power transmission solutions.

4. Maintenance: Gear reducer systems require regular maintenance, including lubrication, inspection, and potential gear replacement over time. Maintenance activities can lead to downtime and associated costs in industrial settings.

5. Noise and Vibration: Gear reducers can generate noise and vibrations, especially at high speeds or when operating under heavy loads. Additional measures may be needed to mitigate noise and vibration issues.

6. Limited Gear Ratios: While gear reducers offer a wide range of gear ratios, there may be limitations in achieving extremely high or low ratios in certain designs.

7. Temperature Sensitivity: Extreme temperatures can affect the performance of gear reducer systems, particularly if inadequate lubrication or cooling is provided.

8. Shock Loads: While gear reducers are designed to handle shock loads to some extent, severe shock loads or abrupt changes in torque can still lead to potential damage or premature wear.

Despite these limitations, gear reducer systems remain widely used and versatile components in various industries, and their disadvantages can often be mitigated through proper design, selection, and maintenance practices.

gear gearbox

What role do gear ratios play in optimizing the performance of gear reducers?

Gear ratios play a crucial role in optimizing the performance of gear reducers by determining the relationship between input and output speeds and torques. A gear ratio is the ratio of the number of teeth between two meshing gears, and it directly influences the mechanical advantage and efficiency of the gear reducer.

1. Speed and Torque Conversion: Gear ratios allow gear reducers to convert rotational speed and torque according to the needs of a specific application. By selecting appropriate gear ratios, gear reducers can either reduce speed while increasing torque (speed reduction) or increase speed while decreasing torque (speed increase).

2. Mechanical Advantage: Gear reducers leverage gear ratios to provide mechanical advantage. In speed reduction configurations, a higher gear ratio results in a greater mechanical advantage, allowing the output shaft to deliver higher torque at a lower speed. This is beneficial for applications requiring increased force or torque, such as heavy machinery or conveyor systems.

3. Efficiency: Optimal gear ratios contribute to higher efficiency in gear reducers. By distributing the load across multiple gear teeth, gear reducers with suitable gear ratios minimize stress and wear on individual gear teeth, leading to improved overall efficiency and prolonged lifespan.

4. Speed Matching: Gear ratios enable gear reducers to match the rotational speeds of input and output shafts. This is crucial in applications where precise speed synchronization is required, such as in conveyors, robotics, and manufacturing processes.

When selecting gear ratios for a gear reducer, it’s important to consider the specific requirements of the application, including desired speed, torque, efficiency, and mechanical advantage. Properly chosen gear ratios enhance the overall performance and reliability of gear reducers in a wide range of industrial and mechanical systems.

gear gearbox

How do gear reducers contribute to speed reduction and torque increase?

Gear reducers play a crucial role in mechanical systems by achieving speed reduction and torque increase through the principle of gear ratios. Here’s how they work:

Gear reducers consist of multiple gears with different sizes, known as gear pairs. These gears are meshed together, and their teeth interlock to transmit motion and power. The gear ratio is determined by the ratio of the number of teeth on the input gear (driver) to the number of teeth on the output gear (driven).

Speed Reduction: When a larger gear (output gear) is driven by a smaller gear (input gear), the output gear rotates at a slower speed than the input gear. This reduction in speed is proportional to the gear ratio. As a result, gear reducers are used to slow down the rotational speed of the output shaft compared to the input shaft.

Torque Increase: The interlocking teeth of gears create a mechanical advantage that allows gear reducers to increase torque output. When the input gear applies a force (torque) to the teeth, it is transmitted to the output gear with greater force due to the leverage provided by the larger diameter of the output gear. The torque increase is inversely proportional to the gear ratio and is essential for applications requiring high torque at lower speeds.

By selecting appropriate gear ratios and arranging gear pairs, gear reducers can achieve various speed reduction and torque multiplication factors, making them essential components in machinery and equipment where precise control of speed and torque is necessary.

China Standard High Quality RV50 Series Worm Gear Reducer   differential gearbox	China Standard High Quality RV50 Series Worm Gear Reducer   differential gearbox
editor by CX 2024-04-26

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *